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ABSTRACT

A game-theoretic mLdel of arms races, based on Prisoners' Dilemma,

is developed in which two players can initially choose any level of arming.

The higher the level, the greater the probability that this choice will

be viewed as escalatory by the other player, who can retaliate subse-

quently if his own initial choice was not considered escalatory.

The quantitative, sequential choices define a Deescalation Game,

which contains an Escalation Equilibrium analogous to the noncooperative

outcome in Prisoners' Dilemma. More auspiciously, this game also contains

a Deescalation Equilibrium, which is analogous to the cooperative outcome

in Prisoners' Dilemma, except that it is stable (i.e., a Nash equilibrium).

The latter equilibrium is better for both players than the Escalation

Equilibrium. Moreover, unlike Prisoners' Dilemma, either player can

initiate a move from the Pareto-inferior Escalation Equilibrium to the

Par2to-superior Deescalation Equilibrium. The initial step is costless

and induces subsequent rational moves that benefit both players, even-

tually leading to the Deescalation Equilibrium. The relevance of this

analysis to the superpower arms race is discussed.
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1. Introduction

The prevention of nuclear war is surely the most daunting problem

facing the world today. The road to sitch a war, should one ever occur,

will probably not be a "bolt from the blue" -- say, a massive nuclear

strike by one superpower against the other and its allies. Rather, it

is likely to erupt in a period of extreme crisis occasioned by a

conventional conflict in which one side, facing imminent defeat, decides

it has no recourse except to use nuclear weapons, or threaten their

use. The conflict need not even involve a nuclear power directly but

only as an ally that feels compelled to come to the aid of a threatened

partner.

An arms race may trigger such a conflict. As tensions mount in

such a race, verbal threats and provocative military maneuvers may

precipitate war, which may then escalate as allies become involved.

Then, if one side's position or very existence is jeopardized, there

is a possibility that it would introduce or threaten to introduce

nuclear weapons to try to avert disaster.

In a previous paper, we showed what kinds of probabilistiL threats

appeared to be optimal to prevent confrontation situations that could

be modeled by the game of Chicken from exploding and wreaking destruction

on both sides.
1

In this paper we shift the focus back to the progenitor

of many crises that produce such perilous showdowns -- namely, arms

races. Our aim is to show under what conditions deescalation rather

than escalation is a rational response to the staggering burdens that

an unrestrained arms race it:poses on both sides.

4
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For this purpose, we start from a model of an arms race based on

the infamous game of Prisoners' Dilemma, but we make major emendations

in the simple 2 x 2 version of this game to permit the players

(1) initially to choose any level of provocation along a disarm-

arm dimension; and

(2) subsequently to retaliate at any level to a provocation if

it is viewed as escalatory, or noncooperative, provided

their initial choice was considered cooperative:.

We interpret these initial and subsequent actions in terms of proba-

bilities of escalation, and retaliation for escalation, which we

assume each player chooses at the beginning of play from an infinite

strategy space (specifically [0,1] x [0,1]).

After calculating maximin strategies in this continuous game, we

demonstrate that it contains two Nash equilibria, or stable outcomes.

The one we call the "Escalation Equilibrium" corresponds to the unique

Nash equilibrium in the classical 2 x 2 version of Prisoners' Dileuma

(to be described in section 2). The other, which we call the "Deescalation

Equilibrium," involves each side's cooperating initially with certainty

but retaliating with a specified probability to noncooperation by the

other side. Although the Deescalation Equilibrium is a promising

addition to the finite version of Prisoners' Dilemma, it does not

answer the nagging question of how one extricates oneself from the

Escalation Equilibrium of the Deescalation Game, which by definition

neither player has an incentive to depart f-om unilaterally.

The superpowers seem stuck at this noncooperative equilibrium

today. Happily for the players in the Deescalation Game, however,

5
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there is a trajectory or path by which they can travel from the Escala-

tion Equilibrium to the Deescalation Equilibrium. Surprisingly, either

player can initiate such a sequence with impunity, triggering subsequent

rational moves by the players that redound to the benefit of both,

eventually reaching the Deescalation Equilibrium. We briefly compare

this resolution of the trying dilemma posed by arms races -- particu-

larly that between the superpowers -- to other game-theoretic approaches,

arguing that our model offers a more realistic representation of the

superpower arms race than others, some of which, nonetheless, suggest

a similar resolution to our own.

2. Prisoners' Dilemma and the Superpower Arms Race

The 2 x 2 game of Prisoners' Dilemma, in which two players (Row

and Column) each have two strategies and can rank the resulting four

outcomes from best (4) to worst (1), is illustrated in Figure 1. The

first number in the ordered pair that specifies each outcome is assumed

Row

FIGURE 1

OUTCOME MATRIX OF PRISONERS' DILEMMA

Cooperate (C)

Do not cooperate (C)

Column

Cooperate (C) Do not cooperate (C)

(3,3)

Compromise

(4,1)

Row wins

(1,4)

Column wins

Key_: (x,y) = (rank of Row, rank of Column)

4 = best; 3 = next best; 2 = next worst; 1 = worst

Circled outcome is clash equilibrium

6
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to be the ranking of Row, and the second number the ranking of Column.

Thus, the outcome (3,3) is next-best for both players, but no

presumption is made about whether this outcome is closer to each

player's best (4) or next-worst (2) outcome. (Later we assume that

players can assign numerical values, or cardinal utilities, to the

outcomes.) Because the two players do not rank any two outcomes the

same -- that is, there are no ties between ranks -- this is a strictly

ordinal game.

The short-hand verbal descriptions given in Figure 1 for each

outcome are intended to convey the qualitative nature of the outcomes,

based on the players' rankings. Because this game is symmetrical

(i.e., the players rank the two outcomes along the main diagonal the

same, and the ranks of the off-diagonal outcomes are mirror images

of each other), the two players face the same problems of strategic

choice.

Each player is assumed to be able to choose between the strategies

of cooperation (C) and noncooperation (C). Each obtains his next-best

outcome of 3 ("compromise") by choosing C -- if the other player also

does -- but both have an incentive to defect from this outcome to

obtain their best outcomes of 4 by choosing C when the other player

chooses C. Yet, if both choose C, they bring upon themselves their

next-worst outcome ("trap"). On the other hand, should one player

choose C when the other chooses C, the C- player "wins" by obtaining

his best outcome (4) at the same time that the C-plaier suffers his

worst (1) outcome.

7
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The dilemma in Prisoners' Dilemma is that both players have a

dominant strategy of choosing C: whatever the other player chooses

(C or C), C is better. But the choice of C by both leads to (2,2),

which is Pareto-inferior since it is worse for both players than (3,3).

In addition, (2,2) is a Nash equilibrium -- that is, neither player

has an incentive to deviate unilaterally from this outcome because he

would do worse, or at least not better, if he did -- whereas (3,3)

is not stable in this sense.
2

Presumably, rational players would choose their dominant, or

unconditionally best, strategies of C, leading to the Pareto-inferior

(2,2) Nash equilibrium. Because of its stability, neither player would

be motivated to depart from (2,2), even though (3,3) is a better out-

come for both than (2,2). In fact, (3,3) is Pareto-superior since any

other outcome which is better for one player is worse for the other.

Should (3,3) somehow manage to be chosen, however, both players would

be tempted to depart from it to try to do still better, rendering it

unstable.

Other concepts of equilibrium distinguish (3,3) as a stable out-

come, but the rules of play they assume require that players act non-

myopically or farsightedly; moreover, they do not rule out (2,2) as

stable, too.
3

If threats are possible in repeated play of Prisoners'

Dilemma under still different rules, however, the stability of (3,3)

is reinforced.
4

Preplay negotiations can also lead to the (3,3) out-

come.
5

We shall introduce shortly the notion of a probabilistic threat

as well as a probabilistic initial strategy choice. But before doing

8
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that, it is worth pointing out that Prisoners' Dilemma is not a constant-

sum game, in which what one player wins the other player loses. Rather,

it is a variable-sum game because the sum of the players' payoffs at

each outcome (if measured cardinally by utilities rattier than ordinally

by ranks) may vary.

A variable-rum game is also a dame of partial conflict, as opposed

to a (constant-sum) game of total conflict in which one player cannot

benefit except at the expense of another. Prisoners' Dilemma is not a

game of total conflict, for both players do worse at (2,2) than at (3,3),

which perhaps belies the name "partial conflict" since (2,2) is, unfor-

tunately for the players, both the product of dominant strategies and

the unique Nash equilibrium. It is hard to see how the players can avoid

it without risking their worst outcomes.

ks a model of the superpower arms race, this recalcitrant game

supports the logic of both sides' arming (noncooperation), even though

this outcome is Pareto-inferior to their disarming or, less ambitiously,

pursuing more limited policies of arms control (cooperation). Cooperation

is problematic because, as Garthoff put it, "they [the Soviets] would

like to have an edge over us [at (1,4) if they are Column], just as we

would like to have an edge over them (at (4,1) if we are Row]."
6

Prisoners' Dilemma elegantly captures this temptation to defect

from the cooperative outcome that, it seems, has inexorably led the

superpowers into a very costly arms race. Nevertheless, at the same

time that it offers a striking explanation of the fundamental intrac-

tability of this continuing conflict -- based only on the rational

behavior of the players -- it drastically simplifies the realities of the

9
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superpower arms race.

Prisoners' Dilemma omits two salient features of the superpower

arms race that we believe need to be incorporated into a more realistic

model, the focus of our attention in the remainder of this paper.

First, a player does not make a dichotomous choice between cooperation

(disarming) or noncooperation (arming) but rather chooses a kind or

level of action, or arms expenditures, that may be interpreted as being

escalatory or deescalatory. Second, in response to an initial choice

viewed as escalatory by his opponent, a player who was not viewed as

escalatory at the start may subsequently choose a new level of expendi-

tures that itself may be seen as escalatory or not.

In effect, players in the Deescalation Game that we shall describe

in the next section can choose initially to provoke or not provoke an

opponent at any level; if provoked, they can retaliate or not retaliate

at any level. Thereby we incorporate into our model not only quanti-

tative choices of any level of cooperativenessinoncoopeiativeness but

also sequential choices that permit players to respond if provoked.

The additional structure of quantitative and sequential choices in

Prisoners' Dilemma not only better mirrors, in our view, real-world

choices in the superpower arms race, but it also will enable us to

derive conditions under which it is rational for the players to be

cooperative in the Deescalation Game and thereby escape the (2,2) trap.

3. The Deescalation Game

The Deescalation Game is defined by the following rules:

(1) The final outcome will be one of the four outcomes of

Prisoners' Dilemma. The payoffs are the same as those

10
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of Prisoners' Dilemma, except that cardinal utilities

replace ordinal rankings. Thus r4 and c4 signify the

highest payoffs for Row and Column, respectively, r1

and c
1

the lowest, etc.

(2) The players do not choose initially between C and C, as in

Prisoners' Dilemma, but instead choose (unspecified)

actions that have associated a nonescalation probability

(s for Row and t for Column) and a complementary escalation

probability (1-s for Row and 1-t for Column). With these

probabilities, their actions will be interpreted as cooperative

(C) and noncooperative (C) strategy choices, respectively.

(3) If both players' initial choices are perceived as the same,

the game ends at that position (i.e., CC or CC). If one

players' choice is perceived as C and the other's as C,

the former player then chooses subsequent actions with an

associated nonretaliation probability (p for Column and q

for Row) and a complementary retaliation probability (1-p

fo... Column and 1-q for Row). With the retaliation proba-

bility, the conflict is escalated further to the final

outcome CC; otherwise it remains as before (at CE or CC).

(4) The players choose their escalation probabilities and retali-

ation probabilities before play of the game. Play commences

when each player simultaneously chooses initial actions that

may be interpreted as either C or C, with associated esca-

lation probabilities. One player may then choose subse-

quent actions, according to rule 3, with the associated

retaliation probability specified at the beginning of play.

11
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The Deescalation Game is represented in Figure 2. Note that

1-s

FIGURE 2

MATRIX REPRESENTATION OF DEESCALATION GAME

t

Column
1 -t

(r
3'

^.

3
)

q(r1,c4)+(1-q)(r2,c2)

= ((l-q)r2,q+(l-q)c2)

P(r4'c1)-1-(1-13)(r2'c2)

= (0-(1-p)r2,(1-p)c2)
(r

2
,c

2
)

10

Ka: (ri,ci) = (payoff to Row, payoff to Column)

r4,c4 = best; r3,c3 = next best; r2,c2 = next worst; r1,c1 = worst

s,t = probabilities of nonescalation; p,q = probabilities of

nonresponse

Normalization: 0 = ri < r2 < r3 < r4 = 1; 0 = cl < c2 < c3 < c4 = 1

besides the fact that the initial strategy choices of the two players

are probabilities (with assumed underlying actions), rather than actions

(C and E) themselves, this payoff matrix differs from the Figure 1 out-

come matrix in having expected payoffs rather than (certain) payoffs

as its off-diagonal entries. This is because we assume that if one

player is perceived to escalate, the other player's (probabilistic)

retaliation will be virtually instanteous, so it is proper to include

in the off-diagonal entries a combination of payoffs -- reflecting both

possible retaliation and possible nonretaliation -- by means of an

expected value.

12
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We assume, of course, that 0 5. s, t, p, q '...--. 1 because they

represent probabilities. To simplify subsequent calculations, we

normalize the payoffs of the players so that the best and worst

payoffs are 1 and 0, respectively. Hence,

0 = r1 < r2 < r3 < r4 = 1;

0= cl < c2 < c3 < c4 = 1.

Because we assume the escalation and retaliation probabilities are

chosen independently by the players, the expected payoffs for Row and

Column are simply the sums of the four payoffs (expected payoffs) in

the Figure 2 matrix, each multiplied by the probability of its

occurrence:

ER(s,q;t,p) = str3+(l-s)t[ p+(l-p)r2]+s(1-0(1-q)r2+(1-s)(1 -Or2; (1)

c
(t,P;s,q) = stc

3
+(1-s)t(1-p)c

2
+s(1-0[q+(l-q)c

2
] + (1-s)(1-t)c

2
. (2)

The introduction of escalation and retaliation probabilities into

the expected-payoff calculations requires some explanation and inter-

pretation. Essentially we assume that every initial action that a

player may take carries with it a probability of being interpreted as

escalatory by his opponent and, if it is, possibly drawing a response.

This response, like the initial action that may escalate the conflict,

is probabilistic in that it is not certain to constitute retaliation.

Rather, both initial actions and subsequent responses have probabilities

associated with their being viewed as escalatory and retaliatory,

respectively, thereby leading to different outcomes in the game.

Thus, for example, the probability that Row will provoke Column
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by his choice is some escalation probability 1-s. If Column is

provoked, and providing that he did not also provoke Row initially

(with escalation probability 1-t), Column will respond with a subsequent

action that (further) escalates the conflict to mutual noncooperation

with retaliation probability 1-p.

If neither player provoked the other [with joint probability st]

or each provoked the other [with joint probability (1-s)(1-0], then

the retaliation probabilities never come into play, for we assume there

is (i) no need to retaliate for the choice of CC and (ii) no possi-

bility of retaliating for the choice of CC. Hence, the first and last

terms of E
R
and EC given by (1) and (2) do not include retaliation

probabilities.

The strategic problem that the players face is to choose both an

initial level of action (with an associated escalation probability) and

a subsequent level of response (with an associated retaliation proba-

bility). We assume, in interpreting probabilities in the Deescalation

Game, that the higher the level of (initial) escalation or (subsequent)

retaliation, the greater the probability that these actions will be

perceived as escalatory/retaliatory. Formally, then, we assume a

linkage between the degree of escalation/retaliation and the probability

that it will be interpreted as such by one's opponent.

When making their choices of initial and subsequent levels of

action (and hence probabilities) before play of the game, we assume

that the players know that their opponents will judge Ole level of these

actions exactly as they do themselves. Consequently, each player's

probability assessment of each level of action will coincide with his

opponent's. Thus, the players can assume that the four escalation

14
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and retaliation probabilities in the two expected-payoff equations are

identical.

These probabilities become common knowledge once the levels of

action (with which they are in correspondence) are selectee in the

Deescalation GEme. This information that is introduced into the play

of

in

the game does not mitigate the problem of choosing the probabilities --

gnorance of one's opponent's choices -- before play commences.

ith respect to the retaliation probabilities, it should be

noted that they are not assumed to be a function of the escalation

probabilities. To be sure, the higher one player's escalation proba-

bility, the more likely his opponent's retaliation probability will

come into play, and hence the more likely retaliation will occur. But

since the retalia tion as well as the escalation probabilities are

chosen before the s tart of the game, the former (for one player) are

,

nt of the latter (for the other).
7

necessarily independe

It is fair to ask why retaliation is ever a problem in Prisoners'

Dilemma; it would seem, on the contrary, always to be a rational

response by a player once he perceives his opponent has escalated the

conflict by choosing C. In th

has escalated to (4,1), he (Row)

case of Row, for example, if Column

does immediately better by moving

the game to (2,2), from which neith

to depart, as we showed earlier.

er player would have an incentive

This logic does not hold in Chicken, which reverses the two worst

outcomes of the players in Prisoners' Dilemma. Thus, the CC outcome

is (4,2), and CC is (1,1), in Chicken. Now

15

Row, at (4,2), would appear
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irrational in threatening to retaliate by moving to (1,1), which is the

principal problem we analyze in our quantitative, sequential analysis

of Chicken as a model of deterrence.
8

In theory, players solve this problem by precommitting themselves

to carry out threats, despite the irrationality of doing so for the

threatener. In practice, one of us has argued, this takes form in

terms of the operational procedures the superpowers have set in place

to respond, if attacked, to a nuclear first strike.
9

We assume that the same kind of precommitments to retaliate can be

made in the case of the Deescalation Game. In this game, however, it

is the combination of escalation and retaliation probabilities that may

make initial escalation for, say, Row, from (r3,c3) -- rather than

subsequent retaliation by Column from (r4,c1) -- irrational.

In the absence of an adequate precommitment to retaliate on the

part of Column, Row may think that he can impose a small probability

of escalation without serious repercussions, although this subjects

Column to his worst outcome. But in our model Column's retaliation

probability assures Row that "too high" an escalation probability would

be irrational for Row, because it would carry the game from (r3,c3)

to (r
2'

c
2
).

Put another way, a precommitment to retaliate with a probability

above a particular level -- to be specified later -- renders initial

escalation unprofitable. This is a precommitment that seems unproblem-

atic, unlike in Chicken. More relevant to the problem of commitment

in Prisoners' Dilemma is a player's ability to precommit himself never

16
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to escalate, which we show has a surprising and salutary consequence

in the Deescalation Game under certain conditions. In either event,

we assume that players can precommit themselves to strategies -- esca-

latory, probabilistic, or certain -- so that there is never any doubt

on the part of an opponent that they will be implemented.

The quantitative questions we next address in our game-theoretic

analysis are what combinations of escalation and retaliation probabil-

ities (i) maximize the payoff a player can guarantee himself of,

whatever his opponent does, (ii) lead to Nash equilibria, and

(iii) induce cooperative choices that allow players to escape the trap

of mutual noncooperation. We in fact show that there are escape routes,

which is why in the title of this paper we call deescalation "rational"

and refer to our extension and refinement of Prisoners' Dilemma as the

Deescalation Game.

4. Rational Play in the Deescalation Game

Consider the Deescalation Game from Row's vantage point. In

Prisoners' Dilemma, by choosing his dominant strategy C, he can guaran-

tee himself a payoff of at least r2, whatever Column chooses. This

guaranteed minimum is Row's security level. By comparison, because Row

chooses probabilities of certain actions and reactions, rather than

strategies themselves, in the Deescalation Game, it is by no means

obvious what he can guarantee himself of, independent of Column's

(probabilistic) choices.

In the Appendix we show that in fact Row can guarantee himself

the same value he can in Prisoners' Dilemma, namely r2. We do this by

calculating, first, the value of Row's expected payoff, ER, when Column,

17
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by his choice of t and p, makes it as small as possible. We then assume

that Row, by his choice of s and q, seeks to maximize this minimum value

of ER. The resulting maximin of ER is Row's security level, for it is

the value that Row can assure himself of even if Column seeks to mini-

mize ER.

There are two ways that Row can guarantee himself at least his

maximin value: by choosing any of his strategies with (i) s = 0 and

q arbitrary, or (ii) q = 0 and s arbitrary. In the former case, Row

escalates with certainty; if Column also escalates or retaliates with

certainty, Row obtains r2, otherwise a higher expected payoff (because

it includes r
4
with some positive probability when Column does not

retaliate). In the latter case, Row never escalates but always retal-

iates; if Column escalates with certainty, Row ensures himself of r2;

otherwise his expected payoff is greater when Column does not (because

it includes r
3
with some positive probability),

Only when Column always escalates (t = 0) does Row suffer his

security level of r2 when he chooses any of his maximin strategies.

When t > 0, by contrast, Row always can do better than r2. In this

case, however, which maximin strategy serves him best depends on

Column's choice of p, as shown in the Appendix. Column's maximin

strategies and security level are analogous, because of the symmetry

of the Deescalation Game.

Maximin strategies, especially in variable-sum games like the

Deescalation Game, are conservative in the extreme, for they presume

that one's opponent desires to minimize one's payoff, even if it hurts

him to do so. By contrast, in constant-sum games maximin strategies

18
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(which are also minimax strategies -- minimize an opponent's maximum

payoff) are more defensible because hurting an opponent always helps

oneself.

If perhaps overly conservative, however, each player's maximin

strategy of escalating with certainty,

s = 0, q arbitrary; t = 0, p arbitrary, (3)

results in a Nash equilibrium, which we call the Escalation Equilibrium.

This equilibrium, of course, corresponds to the unique Nash equilibrium

at (r2,c2) in Prisoners' Dilemma. Since a player who escalates forgoes

any opportunity to retaliate in the Deescalation Game, the Escalation

Equilibrium is independent of whatever retaliation probabilities the

players choose in this game.

Auspiciously, the Escalation Equilibrium is not unique in the De-

escalation Game. As shown in the Appendix, there is a second Nash Equil-

ibrium,

c3 c2 r3 r2
s = 1, q 5 , t = 1, p

1-c2 1-r
2

(4)

which we call the Deescalation Equilibrium. It says that a player

(say, Column) will never escalate (t = 1); but in response to escalation

by Row, sometimes Column will not retaliate (with nonretaliation proba-

bility p 5
r

1
) and other times he will (with retaliation probability

-r2

r3 r2

1-p >
2

. More accurately, Column will choose actions in response

to any prior (escalatory) actions by Row with a retaliation probability

19
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greater than the threshold value,
r3 -r

1-r
2

Why this threshold value? As shown in the Appendix, this is the

value that makes Row's expected payoff, ER, independent of his choice

of s. If Column's retaliation probability exceeds this threshold,

however, Row would (irrationally) decrease ER should he deviate from

s = 1 (i.e., by choosing s < 1). Hence, given Column's retaliation

probability is above the threshold value, Row maximizes E
R
by choosing

s = 1 and will not have an incentive to deviate. For analogous reasons,

Column will not deviate from the Deescalation Equilibrium, rendering

the resulting outcome stable. This outcome, of course, corresponds to

the (r3,c3) compromise in Prisoners' Dilemma.

Perhaps the most significant feature of the Deescalation Game is

that it makes the compromise outcome stable, even though this outcome

is highly unstable in the underlying Prisoners' Dilemma game. This

stability is due to the fact that the values of the two off-diagonal

outcomes of Prisoners' Dilemma, which give Row 4 at one outcome (lower

left in Figure 1) and Column 4 at the other (upper right in Figure 1),

are diminished to expected values less than r3 and c3 by the Deescalation

Equilibrium strategies. The high probability of retaliation substan-

tially dilutes the value of a win, r4 or c4, with the value of the much

less desirable trap outcome, r2 or c2. Meanwhile, the payoffs at compro-

mise, r3 and c3, are unaffected in the passage from Prisoners' Dilemma

to the Deescalation Game, making them, in relative terms, the most

attractive when retaliation is likely. When both sides are prepared to

retaliate, nonescalation is each player's best strategy, and compromise

the mutually best outcome.
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We demonstrate in the Appendix, using an exhaustive search for

Nash equilibria, that there are none other than the Escalation Equili-

brium and the Deescalation Equilibrium in the Deescalation Game. One

effect, then, of high retaliation probabilities in this game is to

transform the cooperative outcome from a next-best nonequilibrium (in

the underlying Prisoners' D lemma game) to a best equilibrium (in the

Deescalation Game) -- without changing the payoffs to the players. The

Deescalation Equilibrium, however, is not th(:. product of dominant

strategies in the Deescalation Game, for one player's Deescalation

Equilibrium strategy is best if the other player chooses his, but defi-

nitely rot best if the other player cno2ses certain other strategies.

At the same time that (r
3
,c

3
) is stabilized in the Deescalation

Game, the stability of (r2,c2) is called into question -- even though

it corresponds to a Nash equilibrium. To see why, assume that the

players begin at the outcome defined by

s = 0, q = q0; t = 0, p = p0; or (0,q0;0,p0) , (5)

where po and qo are arbitrary. Since the players escalate with

certainty, they receive payoffs (r2,c2) at this Escalation Equilibrium.

Now let Column change his strategy to t = t0, p = 0, so the

strategies become

(C,q0 ;t0,O) , (6)

where Co?umn escalates with arbitrary probability t0 > 0 and always

retaliates (p = 0). The players still receive (r2,c2), but Column has

changed his Nash-equilibrium strategy (i.e., probabilities) without cost
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to himself.

If Row next changes his Nash-equilibrium strategy to never esca-

late "out always retaliate, giving

(1,0;t0,0),

his expected payoff will be

ER(1,0;t00J, = t0r3 + (1 t0)r2 .

This is clearly better for him (since t
0
> 0) than r

2
that he receives

at the Deescalatioa 1...quilbrium and at (6), so Ile would be motivated

to switch from (6) to (7). In fact, switching from s = 0, q = q0 to

s = 1, q = 0 maximizes Row's expected payoff as long as Column plays

t = t
0
,p = 0.

But now, if to < 1, Column can respond to the situation at

(7) by changing his strategy to never escalate but always retaliate,

too, giving

(7)

(1,0;1,0). (8)

This raises EC for him from

Ec(t0,0;1,0) = t0c3 + (0 - t0)c2

at (7) to

Ec(1,0;1,0) = c3

at (8), which is a Deescalation Equilibrium with payoffs (r3,c3) for

both players. Again, Column's move from (7) to (8) maximizes Column's

return, assuming Row's strategy is fixed.
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Thereby the players can move progressively along the path defined

Costless Beneficial Beneficial

(5) > (6) > (7) > (8),
to Column to Row to Column

with only the first step that triggers the process not positively bene-

ficial to the player (Column) who makes the initial move from the Esca-

10
lation Equilibrium. But it is a costless change for Column, so presum-

ably he will make it if he anticipates that it will trigger the subse-

quent (beneficial) moves by Row and Column, respectively.

Indeed, the "trigger condition" can be relaxed to t0 > 0,

r3

P < at (6) in the sense that any such (t0,p0) chosen by Column
0 1r

2

would motivate Row to choose s = 1, q = 0 at (7). However, use of any

p0 satisfying 0 < p <
r3

would reduce (temporarily) Column's payoff
0 0 1-r

2

to

E
C
(t

0
,p
0'
-0,q

0
) = c2 - t0p0c2

As noted previously, p0 = 0 is costless, so the (5)--->(6)--->(7)--->(8)

path is the most persuasive -- no player would ever suffer any loss in

departing from his Nash-equilibrium strategies, making the need for

irrevocable precommitments less. Obviously, the roles of the players

that are indicated above can be reversed to trace another path from the

Escalation to the Deescalation Equilibrium.
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It is interesting to note in the Deescalation Game that it is

the Escalation Equilibrium which exhibits some instability, for a cost-

less perturbation by one player induces an immediate shift away from

the Escalation Equilibrium toward the Deescalation Equilibrium. The

perturbation triggering the shortest path to deescalation is t = t0 = 1,

p = O. It is also noteworthy that this particular perturbation strat-

egy -- never escalate, but always retaliate -- bears a strong resemblance

to the tit-for-tat strategy recommended by Axelrod for '.Lerated

Prisoners' Dilemma.
11

We do not, however, assume repeated conditioned play of Prisoners'

Dilemma but only an ability to retaliate for an initial untoward action

of an opponent. Remarkably, this retaliatory ability turns out to be

sufficient both to deter an opponent and induce him to shift to the

same deterrent strategy, from which he also will benefit. Once both

players have adopted -- and precommitted themselves to -- this posture,

their payoffs at the Deescalation Equilibrium are not only better for

both than at the Pareto-inferior Escalation Equilibrium but they are

also highly stable: both players would do immediately worse by

deviating from s = t = 1 (never escalate) because of possible retal-

iation.

However, they can afford to raise p = q = 0 (certain retaliation)

up to the threshold values given earlier [see (4)] for the Deescalation

Equilibrium -- thereby making retaliation less than certain -- and

still maintain stability. In other words, each player's r taliatory

threat need only be probabilistic -- or perhaps a certain equivalent

(i.e., a lower-level retaliatory action) that signals more serious
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retaliation is possible. This possibly may make it more credible, as

we argued in the Deterrence Game based on Chicken,
12

except that each

play,:r in tie Deescalation Game -- and Prisoners' Dilemma on which it is

based -- has an evident incentive to carry out a threat because he

immediately benefits, even if the resulting outcome is Pareto-inferior.

In fact, whether the underlying game is Chicken or Prisoners'

Dilemma, the purpose of threatening retaliation is to deter an opponent

from deviating from (r3,c3), whether or not it is costly to carry out

a threat once he does. Thus, the logic underlying threats that stabi-

lize (r3,c3) in both games is exactly the same. But beyond the use of

retaliatory threats to render this outcome an equilibrium in the

Deescalation Game, we believe even more hopeful is our finding that

there is a costless, and in general beneficial, way for the players

to escape the (r2,c2) trap and reach the (r3,c3) compromise outcome

in this game.

6. Conclusions

Arms races are not only terribly costly but also may increase the

probability of war between two states under certain conditions.
13

When

these states are the superpowers, and the costs are in the hundreds

of billions of dollars -- with nuclear holocaust a possible consequence

of fighting that may erupt in an extreme crisis -- then there is good

reason to ponder how to deescalate the superpower arms race.

The arms race has persisted, we believe, because both sides see

it as a Prisoners' Dilemma, with little hope of escaping the (2,2)

trap. To be sure, the superpowers have been able to reach some arms-

control agreements. For the most part, however, they have been of a
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very limited nature, and even some of these seem in trouble today

because of mistrust and suspicions of cheating as well as new techno-

logical developments.
14

The Deescalation Game, insofar as it reflects the quantitative

choices about arms expenditures that each side makes -- and the

possible responses to the other side's perceived expenditures -- gives

some basis for being sanguine. First, by stabilizing the compromise

outcome (r
3'

c
3
)

'

and, second, by showing that there is a rational

path from the trap (r2,c2) to the compromise (r3,c3), it suggests how

the Deescalation Equilibrium might supplant the Escalation Equilibrium

as the rational outcome of this game. Essentizlly each side must

precommit itself to respond to, but not initiate, escalation. Retal-

iation, while rational in Prisoners' Dilemma (as opposed to Chicken)

once one side has escalated, nevertheless hurts both players at the

resulting Escalation Equilibrium, at least compared to the Deescalation

Equilibrium.

The fact that he players can extricate themselves from the

Escalation Equilibrium by a series of rational moves and responses

in the Deescalation Game is what makes this game a much more pleasant

one to play than Prisoners' Dilemma. If it is also a more realistic

model of Prisoners' Dilemma type conflicts such as the superpower

arms race, then it suggests a solution, at least at a conceptual

level, to the pathology of such conflicts when they have the quanti-

tative, sequential character of the Deescalation Game.

We think that arms races, particularly the arms race between the

superpowers, have this character. It requires a leader of imagination
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to commit himself to deescalatory policies, though to be effective

our model suggests that these need to be combined with the threat of

possible retaliation if the other side does not follow suit. Given

such a carrot-stick combination, there is no great daring that this

posture demands, because, at least in theory, it is costless. In

reality, this may not be entirely so -- for domestic political

reasons, among others -- but we believe our model goes a long way

toward justifying a more conciliatory posture if the threat of retal-

iation is also present and real.
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APPENDIX

We present the details of our analysis of the Deescalation Game

in this Appendix. We begin by calculating the players' maximin

strategies and values, and then we determine all Nash equilibria by

an exhaustive search.

The rules of the Deescalation Game are given in the text, where

the payoffs and strategic choices, and their interpretations, are

made explicit. The game is depicted in Figure 2. For convenience,

the expected payoffs of Row (R) and Column (C) are repeated here:

ER(s,q;t,p) = str3+(l-s)t[p+(l-p)r2]+s(1-0(1-q)r2

+ (1-s)(1-t)r2

= r24st(rl-r2) +(1-s)tp(1-r2)-s(1-0qr2; (1)

Ec(t,p;s,q) = stc3+(l-s)t(1-p)c2+s(1-0[q+(1-q)c2]

+(1-s)(1-0c2

= c2+ st( c3- c2)- (1- s)tpc2 +s(1- t)q(1 -c2). (2)

To identify Row's maximin strategy, suppose first that s and

q are fixed and notice from (1) that

aE
R
= s(r3-r2) +(1-s)p(1-r2)+sqr2 ?. 0,

at

with equality if and only if s = 0 and p = 0. Thus, if Row chooses

s >0,

min ER "(s q.t p) = min E
R
(s,q;0,p) = min {r2 -sqr21 = r2(1-sq).

t,p
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Also, since t 0, p .?. 0, and r2 < 1,

min ER "(0 ort,p) = min {r24.tp(1-r2)} = r2.
t,p t,p

Therefore, for all permissible values of s and q,

min E
R ' "(s q.t p) = r2(1-sq),

t,p

so that Row's maximin value is

max min E
R '

(s q.t p) = max {r2(1-sq)} = r2.
s,q t,p s,q

Furthermore,Rowcanachievehisnmciminvaluer2by choosing any of

his strategies with s = 0 (and q arbitrary), or with q = 0 (and s

arbitrary). It is interesting to note that any of these maximin

strategies yields to Row t.xactly his maximin value when t = 0 [see

(1)]; if t > 0, Row may receive more. Specifically, if t > 0 and

p > (r3-r2)/(1-r2), a maximin strategy of the form (s = 0, q arbi-

trary) gives Row his best payoff, whereas if t > 0 and p < (r3-r2)/

(1-r
2
) Row's preferred maximin strategy is s = 1, q = 0. If p =

(r
3
-r

2
)/(1-r

2
)

'

Row would be indifferent among his maximin strategies

because

ER = r2 + t(r3 - r2)-s(1-t)qr2,

which yields the same value, r2 +t(r3 -r2), in every case.

It follows from the symmetry of the Deescalation Game that

Column's maximin value is c
2

and that any of Column's strategies with

t = 0 or p = 0 are maximin strategies, guaranteeing him a payoff of

29



28

at least c2. The properties of Column's maximin strategies are

analogous to those of Row's, as discussed above.

We turn now to the search for Nash equilibria in the Deescalation

Game. Our search is organized according to the values of s and t at

the equilibrium.

Case 1: t = O.

If t = 0, then (1) becomes

Ell(s,q;0,p) = r2(1-sq),

so that R's best reply to t = 0 is either s = 0 (and q arbitrary) or

q = 0 (and s arbitrary). By symmetry, t = 0 (and p arbitrary) is

also a best reply for C against s = O. It is easy to verify directly

that all strategy combinations

s = 0, q arbitrary; t = 0, p arbitrary, (3)

are equilibria. We call (3) the Escalation Equilibrium, since it is

characterized by both players' escalating with certainty. At the

Escalation Equilibrium, the outcome of the Deescalation Game is always

the trap outcome of the underlying Prisoners' Dilemma game, yielding

the players (r2,c2).

We now show that (3) are the only equilibria consistent with

Case 1 by considering C's response to R's strategy choice s > 0,

q = O. By (2),

Ec(t,p;s,0) = c2+st(c3-c2)-(1-s)tpc2.
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If 0 < s < 1, then

29

max EC "v' s 0) = max EC " '0.s 0)
t,p

= max{c
2
+st(c

3
-c

2
)} = c2 +s(c3 -c2),

t

which occurs at t = 1 and p = O. If s = 1, this maximum is also

c2+s(c3-c2), occurring at t = 1. Therefore, C's best reply to

s > 0, q = 0 includes t = 1, so tha, no strategy combination includ-

ing s > 0, q = 0 and t = 0 (as assumed in Case 1) is an equilibrium.

Case 2: s = O.

By an argument analogous to that for Case 1, the only equilibrium

consistent with s = 0 is the Escalation Equilibrium (3).

Case 3: t = 1.

If t = 1, then (1) becomes

ER(s,q;1,p) = r2+s(r3-r2)+(1-s)p(1-r2)

[r2+P(1-r2)]-/-s[r3-r2-13(1-r2)].

From the final expression of (9) it follows that s = 1 is R's best

reply if

r3 r2

P 1-r
2

Symmetry places an analogous condition on q in order that t = 1 be

C's best response to s = 1. It is easy to verify directly that

c3 -c2 r3-r2
s = 1, q

'

t = 1, p
1-c

2
1-r2 '

(9)

(4)

is an equilibrium, which we call the Deescalation Equilibrium. Observe

that the Deescalation Equilibrium always results in the compromise out-
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come of the underlying Prisoners' Dilemma game, yielding the players

(r
3'

c
3
),

To show that there are no equilibria other than (4) consistent

with Case 3, we note first that, if p (r3-r2)/(1-r2), (9) implies

that s = 0 would be R's best reply; but we have already proven (Case

2) that there are no equilibria with s = 0 and t = 1. The only

remaining possibility is the combination 0 < s < 1, t = 1, and p =

(r3-r2)/(1-r2). But now (2) gives

aEC

ap
= -(1-s)tc

2
< 0

since 0 < s < 1 and t = 1. Thus p = 0 at any equilibrium with

0 < s < 1 and t = 1, contradicting the inference [from (9)] that

p = (r3-r2)/(1-r2) > 0.

Case 4: s = 1.

As in Case 3, the only equilibrium with s = 1 is the Deescalation

Equilibrium (4).

Case 5: 0< s< 1, 0< t< 1

In this case, it follows from (2) that

aE
c

a
= -(1-s)tc

2
< 0,

P

so that p = 0 is necessary at any equilibrium. Similarly, q = 0 is

necessary also. But now (1) shows that

ER(s,0;t,0) = r2+st(r3-r2)

which, since t > 0, R can maximize only at s = 1. Hence there are

no equilibria consistent with Case 5.
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